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Abstract

Although current evaluation of question-

answering systems treats predictions in isola-

tion, we need to consider the relationship be-

tween predictions to measure true understand-

ing. A model should be penalized for answer-

ing “no” to “Is the rose red?” if it answers

“red” to “What color is the rose?”. We propose

a method to automatically extract such impli-

cations for instances from two QA datasets,

VQA and SQuAD, which we then use to eval-

uate the consistency of models. Human evalu-

ation shows these generated implications are

well formed and valid. Consistency evalua-

tion provides crucial insights into gaps in ex-

isting models, and retraining with implication-

augmented data improves consistency on both

synthetic and human-generated implications.

1 Introduction

Question-answering (QA) systems have become

popular benchmarks for AI systems, as they re-

quire the ability to comprehend and employ com-

plex reasoning about the question and the associ-

ated context. In order to really excel in machine

comprehension (Rajpurkar et al., 2016), for exam-

ple, models need to understand the entities, coref-

erences, and relations in the paragraph, and align

them to the information need encoded in the ques-

tion. Similarly, Visual Question Answering (An-

tol et al., 2015) requires not only perception abili-

ties (fine-grained recognition, object detection), but

also “higher level reasoning” about how the ques-

tion is related to the visual information, common-

sense reasoning, knowledge based reasoning, and

the understanding of location/color/size attributes.

However, recent work has shown that popular

benchmarks have crucial limitations in their ability

to test reasoning and comprehension. For example,

Weissenborn et al. (2017) show that models can

do well in the SQuAD dataset by using heuristic

(a) Input image from the
VQA dataset.

How many birds? A: 1

Is there 1 bird? A: no

Are there 2 birds? A: yes

Are there any birds? A: no

(b) Model (Zhang et al., 2018)
provides inconsistent answers.

Kublai originally named his eldest son, Zhenjin, as the
Crown Prince, but he died before Kublai in 1285.

(c) Excerpt from an input paragraph, SQuAD dataset.

Q: When did Zhenjin die? A: 1285

Q: Who died in 1285? A: Kublai

(d) Model (Peters et al., 2018) provides inconsistent answers.

Figure 1: Inconsistent QA Predictions: Models that

are accurate for questions from these datasets (first row

in (b) and (d)) are not able to correctly answer follow-

up questions whose answers are implied by the original

question/answer. We generate such questions automati-

cally, and evaluate existing models on their consistency.

lexical and type overlap between the context and

the question. Biases have also been observed in

the popular VQA dataset, e.g. answering questions

starting with “Do you see a ...” with “yes” results

in 87% accuracy, and “tennis” is the correct answer

for 41% of questions starting with “What sport is ...”

(Goyal et al., 2017).

While there are laudable efforts to try to dimin-

ish such biases (Rajpurkar et al., 2018; Goyal et al.,

2017), they do not address a fundamental evalua-

tion question: it is not only individual predictions

that matter, but also whether multiple answers re-

flect a consistent and coherent model. For example,

in Figure 1, models answer original questions cor-

rectly but answer follow-up questions in an incon-

sistent manner, which indicates they do not really

understand the context or the questions (e.g. simul-

taneously predicting 0, 1, and 2 birds in Figure 1b).



In this paper, we propose evaluation for QA sys-

tems that measures the extent to which model pre-

dictions are consistent. We first automatically gen-

erate new question-answer pairs that are implied

by existing instances from the dataset (such as the

ones in Figure 1). We use this generated dataset

to evaluate models by penalizing them when their

predictions are not consistent with these implica-

tions. Human evaluation verifies that the generated

implications are valid and well formed when com-

pared to original instances, and thus can be used

to evaluate and gain insights into models for VQA

and SQuAD. Finally, we propose a simple data aug-

mentation procedure that results in models nearly

as accurate as the original models on the original

data, while being more consistent when measured

by our implications and by human generated impli-

cations (and thus expected to generalize better in

the real world).

2 Related Work

Since QA models often exploit shortcuts to be

accurate without really understanding questions

and contexts, alternative evaluations have been pro-

posed, consisting of solutions that mitigate known

biases or propose separate diagnostic datasets. Ex-

amples of the former include adding multiple im-

ages for which the answer to the same question is

different (Goyal et al., 2017; Zhang et al., 2016), or

questions for which an answer is not present (Ra-

jpurkar et al., 2018). While useful, these do not take

the relationship between predictions into account,

and thus do not capture problems like the ones in

Figure 1. Exceptions exist when trying to gauge

robustness: Ribeiro et al. (2018) consider the ro-

bustness of QA models to automatically generated

input rephrasings, while Shah et al. (2019) evalu-

ate VQA models on crowdsourced rephrasings for

robustness. While important for evaluation, these

efforts are orthogonal to our focus on consistency.

Various automatically generated diagnostic

datasets have been proposed (Weston et al., 2015;

Johnson et al., 2017). While these recognize the

need to evaluate multiple capabilities, evaluation is

still restricted to individual units and thus cannot

capture inconsistencies between predictions, like

predicting that an object is at the same time to the

left and to the right of another object. Furthermore,

questions/contexts can be sufficiently artificial for

models to reverse-engineer how the dataset was

created. An exception contemporaneous with our

(a) Example input image.

Q: What room is this?

A: bathroom

(b) Example (q, a) pair.

Type Cov Example

Logeq 56.8% Is this a bathroom? Yes
Nec 50.2% Is there a bathroom in the picture? Yes
Mutex 34.6% Is this a kitchen? No

(c) Implication types, with coverage and examples.

Figure 2: VQA Implications and examples. Implica-

tions can be generated for 67.3% of the original data.

work is GQA (Hudson and Manning, 2019), where

real images are used, and metrics such as consis-

tency (similar to our own) are used for a fraction

of inputs. Since questions are still synthetic, and

“not as natural as other VQA datasets” (Hudson

and Manning, 2019), it remains to be seen whether

models will overfit to the generation procedure or

to the implications encoded (e.g. many are simple

spatial rules such as “X to the left of Y implies Y

to the right of X”). Their approach is complemen-

tary to ours – they provide implications for ∼54%

of their synthetic dataset, while we generate dif-

ferent implications for ∼67% of human generated

questions in VQA, and ∼73% of SQuAD questions.

3 Generating Implications

Let an instance from a QA datset be represented by

(c, q, a) denoting respectively the context (image or

paragraph), question, and answer (c may be omit-

ted for clarity). We define logical implications as

(c, q, a) → (c, q′, a′) , i.e. an answer a to q implies

that a′ is the answer for question q
′ for the same

context. We now present a rule-based system that

takes (q, a) and generates (q, a) → (q′, a′).

Visual QA (q, a) pairs in VQA often have both

positive and negative implications that we encode

into three types of yes/no implications, illustrated

in Figure 2: logical equivalence (Logeq), neces-

sary condition (Nec) and mutual exclusion (Mutex)

(more examples in appendices). To generate such

instances, we use a dependency parser (Dozat et al.,

2017) to recognize root/subject/object and build

the implication appropriately, and to detect auxil-

iary/copula that may need to be moved. Logical

equivalence implications are generated by trans-





Original Q: How many zebras are there? A: 4

Implication Q: Are there any zebras?

Control Q: Is this scene taken in the wild?

(a) Example from the VQA dataset.

Original Q:Which IPCC author criticized the TAR?

A: Richard Lindzen

Implication Q: What did Richard Lindzen criticize?

Control Q: Who responded to Lindzen’s criticisms?

(b) Example from the SQuAD dataset.

Figure 4: Testing the validity of implications: given

an original (q, a) pair, humans should be able to deduce

the answer for the implication question without context,

but not necessarily for the control question.

VQA SQuAD

Impl Control Impl Control

#Answered 99% 13% 95% 4%
#Correct|Answered 97% 77% 97% 50%

Table 2: Validating Implications: Crowd evaluation

of the validity of implications, where the first row indi-

cates how often workers provide an answer, while the

second row indicates the precision of their answers.

(q, a) holds. For control purposes, we also include

question-answer pairs asked of the same context

from the dataset, expecting that workers would not

be able to answer these without the original context

most of the time (Figure 4a provides an example

where a reasonable guess can be made, which is

not true in Figure 4b). We take the same 100 im-

plications from the previous experiment and add

100 control questions, each evaluated by 5 workers.

Workers are instructed to abstain from answering

if the original (q, a) does not give them enough

information to answer q′ or the control question.

For each question, we evaluate the worker major-

ity answer w.r.t. the implication or control answer.

The results in Table 2 are quite positive: workers

almost always provide the correct answer a′ to our

implication question q
′ when given only the orig-

inal (q, a) pair and no additional context, which

indicates the implication is valid. On the other

hand, workers under-predict and are inaccurate for

the control questions, which is expected since there

is no necessary logical connection between (q, a)
and the control question.

4.3 Evaluating Consistency of QA Models

Having concluded that our generated implications

are high quality and typically valid, we proceed

to use them to evaluate the logical consistency of

models. For VQA, we evaluate the SAAA baseline

(Kazemi and Elqursh, 2017), a recent model with

a counting module (Count; Zhang et al., 2018),

and bilinear attention networks (BAN; Kim et al.,

2018). For SQuAD, we evaluate bidaf (Seo et al.,

2017), bidaf with ELMO embeddings (bidaf+e;

Peters et al., 2018), rnet (Wang et al., 2017), and

Mnemonic Reader (mnem; Hu et al., 2018). All

models are trained with available open source code

with default parameters.

The results for VQA are presented in Table 3.

Note that more accurate models are not necessarily

more consistent, and that all models are particularly

inconsistent in the Mutex category. One specific

category of Mutex that affects all models was ask-

ing the equivalent n+1 questions when the answer

is a number n, e.g. “How many birds? 1” implies

“Are there 2 birds? no”. SAAA, Count, and BAN

had, respectively, 35.3%, 22.4% and 32.2% con-

sistency in this category even though Count has

a module specific for counting (implications are

binary yes/no questions, and thus random guess-

ing would give 50% consistency). This is probably

because the original dataset contains numbers in

12.3% of answers, but only in 0.3% of questions,

thus models learn how to answer numbers, but not

how to reason about numbers that appear in the

question. Evaluating consistency in this case is

useful for finding gaps in models’ understanding,

and similar insights can be reached by considering

other violated implications.

For SQuAD (Table 4), we consider a prediction

as consistent if it had any overlap with the implied

answer. Again, models with different accuracies

do not vary as much in consistency. All models

are less consistent on direct object implications.

Interestingly, ∼12% of questions in the training

data have the WH-word in the direct object subtree

(e.g. “Who did Hayk defeat?”), while 53% are in

the subject subtree (e.g. “Who is Moses?”), which

may warrant further investigation.

All models had average consistency lower or

equal to 75%, which indicates they do not possess

real comprehension of the concepts behind many

of their correct predictions. Besides surfacing this,

consistency evaluation provides clues as to poten-

tial sources of such problems, such as the lack of



Model Acc LogEq Mutex Nec Avg

SAAA 61.5 76.6 42.3 90.2 72.7
Count 65.2 81.2 42.8 92.0 75.0
BAN 64.5 73.1 50.4 87.3 72.5

Table 3: Consistency of VQA Models.

Model F1 Subj Dobj Amod Prep Avg

bidaf 77.9 70.6 65.9 75.1 72.4 72.1
bidaf+e 81.3 71.2 69.3 75.8 72.8 72.9
rnet 79.5 68.5 67.0 74.7 70.7 70.9
mnem 81.5 70.3 68.0 75.8 71.9 72.2

Table 4: Consistency of SQuAD Models.

questions with numbers in VQA.

4.4 Data Augmentation with Implications

We propose a simple data augmentation technique:

for each (q, a) in the training set, add a generated

implication (q′, a′) if one exists. We evaluate the

consistency of models trained with augmentation

on held-out implications, to check whether they

generalize to unseen generated implications. Fur-

ther, to verify if augmentation improves consis-

tency “in the wild”, we collect new implications

from Mechanical Turk by showing workers (q, a)
pairs without context (image or paragraph), and

asking them to produce new (q′, a′) that are implied

by (q, a) for any context. For VQA, we restrict a′

to be yes / no, while for SQuAD we filter out all

a
′ that are not present in the original paragraph,

resulting in a total of 3, 277 unique implication an-

notations for VQA and 1, 027 for SQuAD. While

workers sometimes create implications similar to

ours, they also include new patterns; implications

that contain negations (all models are very inconsis-

tent on these), word forms for numbers (e.g. “one”),

comparatives (“more”, “less”), and implications

that require common sense, such as (“What type of

buses are these? double decker”→“Do the buses

have 2 levels? yes”). The results are presented in

Table 5. Accuracy on the validation set remains

comparable after augmentation, while consistency

on both generated and worker-provided implica-

tions improves across models and tasks. We also

evaluate SAAA on the GQA dataset (Hudson and

Manning, 2019) (Count and BAN use features that

are not allowed in GQA): while accuracy is com-

parable (41.4% before augmentation, 40.4% after),

consistency goes up significantly (59.3% before,

64.7% after). These results indicate that data aug-

mentation is useful for increasing consistency with

Model
Validation Consistency Consistency
Accuracy (rule-based) (crowdsourced)

V
Q

A

SAAA 61.5 60.8 72.7 94.4 73.0 75.6

Count 65.2 64.8 75.0 94.1 73.8 77.3

BAN 64.5 64.6 72.4 95.0 72.3 77.9

S
Q

u
A

D

bidaf 77.9 76.4 72.1 79.1 68.2 70.9

bidaf+e 81.3 80.7 72.9 81.2 70.7 70.6

rnet 79.5 79.5 70.9 79.8 66.5 68.1

mnem 81.5 81.3 72.2 81.5 68.7 73.9

Table 5: Data Augmentation: Accuracy (F1

for SQuAD) and consistency results before and

after data augmentation . Consistency (rule-based) is

computed on our generated implications, while (crowd-

sourced) is computed on crowdsourced implications.

a small trade off in accuracy. We leave more so-

phisticated methods of enforcing consistency (e.g.

in models themselves) for future work.

5 Discussion

We argued that evaluation of QA systems should

take into account the relationship between predic-

tions rather than each prediction in isolation, and

proposed a rule-based implication generator which

we validated in crowdsourcing experiments. The

results of this approach are promising: consistency

evaluation reveals gaps in models, and augment-

ing training data produces models that are more

consistent even in human generated implications.

However, data augmentation has its limitations: it

may add new biases to data, and it cannot cover all

the different implications or ways of writing ques-

tions. Ideally, we want models to be able to reason

that “What color is the rose? Red” implies “Is the

rose red? Yes” without needing to add every possi-

ble implication or rephrasing of every (q, a) to the

training data. We hope that our work persuades oth-

ers to consider the importance of consistency, and

initiates a body of work in QA models that achieve

real understanding by design. To support such

endeavours, generated implications for VQA and

SQuAD, along with the code to generate them and

for evaluating consistency of models, is available

at https://github.com/marcotcr/qa consistency.
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and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Peng Zhang, Yash Goyal, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2016. Yin and Yang:
Balancing and answering binary visual questions. In
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Yan Zhang, Jonathon Hare, and Adam Prgel-Bennett.
2018. Learning to count objects in natural images
for visual question answering. In International Con-
ference on Learning Representations.



A Implications selected at random: VQA dataset

Context Question/Answers

Original: Where is the fork? A: left of plate

Logeq: Is the fork on the left of the plate? A: yes

Original: What are the men sitting on? A: bench

Logeq: Are the men sitting on the bench? A: yes

Nec: Is there a bench in the picture? A: yes

Original: What is the number on the bus A: 38

Logeq: Is the number on the bus 38? A: yes

Original: What kind of headwater is the man

on the left wearing?

A: headband

Logeq: Is the man on the left wearing a head-

band?

A: yes

Nec: Is there a headband in the picture? A: yes



Context Question/Answers

Original: What is on the top of the clock tower A: cross

Logeq: Is the cross on the top of the clock

tower?

A: yes

Mutex: Is the area on the top of the clock

tower?

A: no

Nec: Is there a cross in the picture? A: yes

Original: Is this a Christian home? A: yes

Mutex: Is this an unchristian home? A: no

Nec: Is this a home? A: yes

Original: What separates the meadow from the

mountains in the background?

A: water

Logeq: Does water separate the meadow

from the mountains in the back-

ground?

A: yes

Original: What color is the couch? A: blue

Logeq: Is the couch blue? A: yes

Mutex: Is the couch orange? A: no

Nec: Is there anything blue in the picture? A: yes

Original: How many toppings are on this

pizza?

A: 2

Logeq: Are 2 toppings on this pizza? A: yes

Mutex: Are 3 toppings on this pizza? A: no

Nec: Are any toppings on this pizza? A: yes

Original: What material is the building in the

back, made of?

A: brick

Logeq: Is the building in the back, made of

brick?

A: yes

Mutex: Is the building in the back, made of

stone?

A: no

Nec: Is there a brick in the picture? A: yes



B Implications selected at random: SQuAD dataset

Context: The first commercially viable process for producing liquid oxygen was inde-

pendently developed in 1895 by German engineer Carl von Linde and British

engineer William Hampson.

Original: When was liquid oxygen developed for commercial

use?

A: 1895

Subj: What was developed for commercial use in 1895? A: liquid oxygen

Amod: Liquid oxygen was developed for which use in 1895? A: commercial

Context: In the 1960s, a series of discoveries, the most important of which was seafloor

spreading, showed that the Earth’s lithosphere, which includes the crust and rigid

uppermost portion of the upper mantle

Original: Which parts of the Earth are included in the litho-

sphere?

A: the crust and rigid upper-

most portion of the

Amod: Which portion of the upper mantle are included in

the lithosphere?

A: crust and rigid upper-

most

Amod:
The crust and rigid uppermost portion of which man-

tle are included in the lithosphere?

A: upper

Prep: The crust and rigid uppermost portion of what are

included in the lithosphere?

A: upper mantle

Prep: Where are the crust and rigid uppermost portion of

the upper mantle included?

A: lithosphere

Context: Around 1800 Richard Trevithick and, separately, Oliver Evans in 1801 introduced

engines using high-pressure steam; Trevithick obtained his high-pressure engine

patent in 1802.

Original: In what year did Richard Trevithick patent his de-

vice?

A: 1802

Subj: Who patented his device in 1802? A: Richard Trevithick



Context: The average Mongol garrison family of the Yuan dynasty seems to have lived

a life of decaying rural leisure, with income from the harvests of their Chinese

tenants eaten up by costs of equipping and dispatching men for their tours of

duty.

Original: How were the Mongol garrison families earning

money?

A: harvests of their Chinese

tenants

Amod: The Mongol garrison families were earning money

by the harvests of their which tenants?

A: Chinese

Prep: The Mongol garrison families were earning money

by the harvests of what?

A: their Chinese tenants

Context: Of particular concern with Internet pharmacies is the ease with which people,

youth in particular, can obtain controlled substances (e.g., Vicodin, generically

known as hydrocodone) via the Internet..

Original: What is an example of a controlled substance? A: Vicodin

Amod: An example of which kind of substance is Vicodin? A: controlled

Prep: An example of what is Vicodin? A: controlled substance

Context: ...the exterior mosaic panels in the parapet were designed by Reuben Townroe

who also designed the plaster work in the library

Original: Who designed the plaster work in the Art Library? A: Reuben Townroe

Dobj: What did Reuben Townroe design in the Art Library? A: plaster work

Prep: Where did Reuben Townroe design the plaster work? A: Art Library

Context: Combustion hazards also apply to compounds of oxygen with a high oxidative

potential, such as peroxides, chlorates, nitrates, perchlorates, and dichromates

because they can donate oxygen to a fire.

Original: What other sources of high oxidative potential can

add to a fire?

A: compounds of oxygen

Prep: Compounds of what can add to a fire? A: oxygen

Prep: What can compounds of oxygen add to? A: fire



Context: In 1881, Tesla moved to Budapest to work under Ferenc Pusks at a telegraph

company, the Budapest Telephone Exchange.

Original: Which company did Tesla work for in 1881? A: the Budapest Telephone

Exchange

Subj: Who worked for the Budapest Telephone Exchange

in 1881?

A: Tesla

Prep: When did Tesla work for the Budapest Telephone

Exchange?

A: 1881

Context: ...membrane is used to run proton pumps and carry out oxidative phosphorylation

across to generate ATP energy.

Original: What does oxidative phosphorylation do? A: generate ATP energy

Subj: What generates ATP energy? A: oxidative phosphoryla-

tion

Dobj: What does oxidative phosphorylation generate? A: ATP energy

Context: formerly model C schools tend to set much higher school fees than other public

schools.

Original: How do the fees at former Model C schools compare

to those at other schools?

A: much higher

Amod:
The fees at former Model C schools compare to those

at which schools by much higher ?

A: other


